Generative Adversarial Network for Class-Conditional Data Augmentation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data Augmentation Generative Adversarial Networks

Effective training of neural networks requires much data. In the low-data regime, parameters are underdetermined, and learnt networks generalise poorly. Data Augmentation (Krizhevsky et al., 2012) alleviates this by using existing data more effectively. However standard data augmentation produces only limited plausible alternative data. Given there is potential to generate a much broader set of...

متن کامل

Conditional Generative Adversarial Nets

Generative Adversarial Nets [8] were recently introduced as a novel way to train generative models. In this work we introduce the conditional version of generative adversarial nets, which can be constructed by simply feeding the data, y, we wish to condition on to both the generator and discriminator. We show that this model can generate MNIST digits conditioned on class labels. We also illustr...

متن کامل

Generative Adversarial Network based on Resnet for Conditional Image Restoration

The GANs promote an adversarive game to approximate complex and jointed example probability. The networks driven by noise generate fake examples to approximate realistic data distributions. Later the conditional GAN merges prior-conditions as input in order to transfer attribute vectors to the corresponding data. However, the CGAN is not designed to deal with the high dimension conditions since...

متن کامل

Context-conditional Generative Adversarial Networks

We introduce a simple semi-supervised learning approach for images based on in-painting using an adversarial loss. Images with random patches removed are presented to a generator whose task is to fill in the hole, based on the surrounding pixels. The in-painted images are then presented to a discriminator network that judges if they are real (unaltered training images) or not. This task acts as...

متن کامل

Bidirectional Conditional Generative Adversarial Networks

Conditional Generative Adversarial Networks (cGANs) are generative models that can produce data samples (x) conditioned on both latent variables (z) and known auxiliary information (c). We propose the Bidirectional cGAN (BiCoGAN), which effectively disentangles z and c in the generation process and provides an encoder that learns inverse mappings from x to both z and c, trained jointly with the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Sciences

سال: 2020

ISSN: 2076-3417

DOI: 10.3390/app10238415